Issue 20, 2023

Non-linear properties and yielding of enzymatic milk gels

Abstract

One of the first steps of cheese making is to suppress the colloidal stability of casein micelles by enzymatic hydrolysis and initiate milk gelation. Afterwards, the enzymatic milk gel is cut to promote syneresis and expulsion of the soluble phase of milk. Many studies have reported on the rheological properties of enzymatic milk gels at small strain, but they provide limited information on the ability of the gel to be cut and handled. In this study, we aim to characterize the non-linear properties and the yielding behavior of enzymatic milk gels during creep, fatigue and stress sweep tests. We evidence by both continuous and oscillatory shear tests that enzymatic milk gel displays irreversible and brittle-like failure, as reported for acid caseinate gels, but with additional dissipation during fracture opening. Before yielding, acid caseinate gels display strain-hardening only, while enzymatic milk gels also display strain-softening. By varying the gel aging time and the volume fraction of casein micelles, we are able to attribute the hardening to the network structure and the softening to local interactions between casein micelles. Our study highlights the crucial importance of the nanoscale organization of the casein micelles – or more generally of the building block of a gel – to retain the macroscopic nonlinear mechanical properties of the gel.

Graphical abstract: Non-linear properties and yielding of enzymatic milk gels

Article information

Article type
Paper
Submitted
28 Nov 2022
Accepted
12 Apr 2023
First published
02 May 2023

Soft Matter, 2023,19, 3562-3569

Non-linear properties and yielding of enzymatic milk gels

J. Bauland, M. Leocmach, M. Famelart and T. Croguennec, Soft Matter, 2023, 19, 3562 DOI: 10.1039/D2SM01556K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements