Issue 33, 2023

Ruthenium and palladium bimetallic nanoparticles achieving functional parity with a rhodium cocatalyst for TiO2-photocatalyzed ring hydrogenation of benzoic acid

Abstract

Our previous study showed that a rhodium (Rh) cocatalyst is indispensable for ring hydrogenation of benzoic acid over a titanium(IV) oxide (TiO2) photocatalyst. In this study, we explored ring hydrogenation under an Rh-free condition by using two kinds of cocatalyst that were inactive for this reaction when used solely. Cyclohexanecarboxylic acid as the ring hydrogenation product was successfully obtained when ruthenium (Ru) and palladium (Pd) were simultaneously loaded on TiO2, indicating that this bimetallic system can be used in place of an Rh cocatalyst in ring hydrogenation. The state and distribution of Ru and Pd in particles loaded on TiO2 were investigated by transmission electron microscopy, X-ray photon spectroscopy, and X-ray absorption near edge structure analysis. The functions of Ru and Pd as cocatalysts are discussed on the basis of results of characterization and activity tests. The effects of different contents of Ru and Pd in Ru–Pd/TiO2 prepared by a two-step photodeposition method on catalytic activity and the features of the reaction system were investigated in detail.

Graphical abstract: Ruthenium and palladium bimetallic nanoparticles achieving functional parity with a rhodium cocatalyst for TiO2-photocatalyzed ring hydrogenation of benzoic acid

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2023
Accepted
07 Jul 2023
First published
10 Jul 2023

Phys. Chem. Chem. Phys., 2023,25, 21868-21874

Ruthenium and palladium bimetallic nanoparticles achieving functional parity with a rhodium cocatalyst for TiO2-photocatalyzed ring hydrogenation of benzoic acid

K. Nakanishi, S. Araki, K. Nomoto, Y. Onoue, R. Yagi, H. Asakura, A. Tanaka, T. Tanaka and H. Kominami, Phys. Chem. Chem. Phys., 2023, 25, 21868 DOI: 10.1039/D3CP01379K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements