Issue 1, 2005

The generation of mesostructured crystalline CeO2, ZrO2 and CeO2–ZrO2 films using evaporation-induced self-assembly

Abstract

Mesostructured thin films of CeO2, ZrO2and CeO2–ZrO2 mixed oxides with highly crystalline pore walls and ordered arrays of mesopores were obtained by a straightforward fabrication process employing evaporation-induced self-assembly (EISA) and a well-designed temperature treatment, taking advantage of a novel type of amphiphilic block copolymer as template. The mesostructure and crystallinity were studied in detail using small-angle and wide-angle X-ray scattering and electron microscopy. The mesostructured CeO2 films are crack-free, possess a final pore size of ca. 10 nm, and the mesopores are surrounded by an almost completely crystalline matrix of nanoparticles of ca. 5–7 nm in size, as revealed by high-resolution electron microscopy. Additionally, the mesoscopic order (bcc structure) shows high thermal stability. The crystallization of the walls is usually accompanied by stresses and strong uniaxial structural shrinkage, which can, however, be significantly diminished by making mixed CeO2–ZrO2 mesostructured systems. Here, the crystallites represent “solid solutions” of both binary oxides and exhibit an even higher thermal stability, while the constituting nanocrystals are smaller compared to the pure CeO2.

Graphical abstract: The generation of mesostructured crystalline CeO2, ZrO2 and CeO2–ZrO2 films using evaporation-induced self-assembly

Article information

Article type
Paper
Submitted
09 Aug 2004
Accepted
23 Sep 2004
First published
08 Dec 2004

New J. Chem., 2005,29, 237-242

The generation of mesostructured crystalline CeO2, ZrO2 and CeO2–ZrO2 films using evaporation-induced self-assembly

T. Brezesinski, M. Antonietti, M. Groenewolt, N. Pinna and B. Smarsly, New J. Chem., 2005, 29, 237 DOI: 10.1039/B412306A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements