Issue 9, 2009

Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging

Abstract

Time-gated luminescence bioimaging based on microsecond-lifetime luminescent biolabels can provide complete background-free conditions for detecting target cells in an autofluorescence biosample matrix. However, a major drawback of the current lanthanide biolabels is the requirement for UV excitation (<370 nm), which leads to damage to many biological systems and greatly affects the improvement of time-gated luminescence instruments. Herein we describe luminescent europium nanoparticles that have an excitation peak around 406 nm with high quantum yield (∼66%) and fine monodispersity in aqueous solutions. The nanoparticles were prepared by copolymerization of a visible-light-sensitized Eu3+ complex 4,4′-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedion-6″-yl)chlorosulfo-o-terphenyl-Eu3+-2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine conjugated with 3-aminopropyl(triethoxy)silane, free 3-aminopropyl(triethoxy)silane and tetraethyl orthosilicate in a water-in-oil reverse microemulsion. Characterization by transmission electron microscopy and luminescence spectroscopy indicates that the nanoparticles are monodisperse, spherical and uniform in size, <50 nm in diameter, and show strong visible-light-sensitized luminescence with a large quantum yield and a long luminescence lifetime. The new nanoparticles were successfully applied to distinguish an environmental pathogen, Giardia lamblia, within a concentrate of environmental water sample using a time-gated luminescence microscope with pulsed visible light excitation. The method resulted in highly specific and sensitive imaging for Giardia lamblia. These results suggest a broad range of potential bioimaging applications where both long time microscopy observation and high signal-to-background ratio are required for samples containing high concentrations of autofluorescence background.

Graphical abstract: Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2008
Accepted
24 Nov 2008
First published
22 Jan 2009

J. Mater. Chem., 2009,19, 1258-1264

Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging

J. Wu, Z. Ye, G. Wang, D. Jin, J. Yuan, Y. Guan and J. Piper, J. Mater. Chem., 2009, 19, 1258 DOI: 10.1039/B815999H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements