Issue 1, 2010

Spatially controlled hydrogel mechanics to modulate stem cell interactions

Abstract

Local control of the stem cell microenvironment with biomaterial design is of critical importance for tissue engineering. Matrix mechanics is one aspect of biomaterial design that has received considerable attention recently due to the effect of mechanics on stem cell proliferation, morphology, and differentiation. In order to investigate the effect of locally controlled mechanics on human mesenchymal stem cells (hMSCs), a sequentially crosslinked hyaluronic acid hydrogel system was developed that permits spatial patterning of mechanics (distinct patterns and gradients). Methacrylated hyaluronic acid was synthesized to allow for crosslinking via both Michael-type addition using a dithiol and radical polymerization using light. By varying the initial methacrylate consumption through addition crosslinking, restricting UV light to specified regions, and varying UV exposure time, a wide range of mechanics (from ∼3 kPa to ∼100 kPa) was possible in both uniform and patterned hydrogels. hMSCs exhibited increased spreading and proliferation on stiffer gels compared to cells cultured on softer gels. Furthermore, cells grown on gels with patterned mechanics exhibited spreading and proliferation behavior that correlated with the local mechanics. This method to spatially control matrix mechanics represents a novel hydrogel system to tune the stem cell microenvironment.

Graphical abstract: Spatially controlled hydrogel mechanics to modulate stem cell interactions

Article information

Article type
Paper
Submitted
17 Aug 2009
Accepted
29 Sep 2009
First published
27 Oct 2009

Soft Matter, 2010,6, 136-143

Spatially controlled hydrogel mechanics to modulate stem cell interactions

R. A. Marklein and J. A. Burdick, Soft Matter, 2010, 6, 136 DOI: 10.1039/B916933D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements