Issue 4, 2011

Viability of plant spore exine capsules for microencapsulation

Abstract

Sporopollenin exine capsules (SECs) (outer exoskeletal wall of the spores of Lycopodium clavatum) were extracted and examined for their potential use as microcapsules. They were shown, by laser scanning confocal microscopy (LSCM), to be void of their inner contents. The removal of nitrogenous and other internal materials was supported by a combination of elemental and gravimetric analyses. Two different methods were investigated to encapsulate substances into SECs which were (i) mild passive migration of materials into the SECs and (ii) subjecting SECs and materials to a vacuum. A range of fluorescent dyes with different polarities were seen using LSCM to encapsulate efficiently into the SECs (up to 1 g.g−1). Relatively unstable materials with different polarities were encapsulated into the SECs: polyunsaturated oils, which are labile to oxidation, and the enzymes streptavidin-horseradish peroxidase (sHRP) and alkaline phosphatase (ALP). Irrespective of the encapsulation techniques employed no oxidation of the oils or denaturation of the enzymes was observed following their full recovery. This study gives the first indication of the viability of SECs to microencapsulate various potentially unstable materials without causing a detrimental effect.

Graphical abstract: Viability of plant spore exine capsules for microencapsulation

Article information

Article type
Paper
Submitted
12 Jul 2010
Accepted
07 Oct 2010
First published
12 Nov 2010

J. Mater. Chem., 2011,21, 975-981

Viability of plant spore exine capsules for microencapsulation

S. Barrier, A. Diego-Taboada, M. J. Thomasson, L. Madden, J. C. Pointon, J. D. Wadhawan, S. T. Beckett, S. L. Atkin and G. Mackenzie, J. Mater. Chem., 2011, 21, 975 DOI: 10.1039/C0JM02246B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements