Issue 22, 2011

Multiscale modeling of soft matter: scaling of dynamics

Abstract

Many physical phenomena and properties of soft matter systems are characterized by an interplay of interactions and processes that span a wide range of length- and time scales. Computer simulation approaches require models, which cover these scales. These are typically multiscale models that combine and link different levels of resolution. In order to reach mesoscopic time- and length scales, necessary to access material properties, coarse-grained models are developed. They are based on microscopic, atomistic descriptions of systems and represent these systems on a coarser, mesoscopic level. While the connection between length scales can be established immediately, the link between the different time scales that takes into account the faster dynamics of the coarser system cannot be obtained directly. In this perspective paper we discuss methods that link the time scales in structure based multiscale models. Concepts which try to rigorously map dynamics of related models are limited to simple model systems, while the challenge in soft matter systems is the multitude of fluctuating energy barriers of comparable height. More pragmatic methods to match time scales are applied successfully to quantitatively understand and predict dynamics of one-component soft matter systems. However, there are still open questions. We point out that the link between the dynamics on different resolution levels can be affected by slight changes of the system, as for different tacticities. Furthermore, in two-component systems the dynamics of the host polymer and of additives are accelerated very differently.

Graphical abstract: Multiscale modeling of soft matter: scaling of dynamics

Supplementary files

Article information

Article type
Perspective
Submitted
28 Jan 2011
Accepted
08 Mar 2011
First published
05 Apr 2011

Phys. Chem. Chem. Phys., 2011,13, 10412-10420

Multiscale modeling of soft matter: scaling of dynamics

D. Fritz, K. Koschke, V. A. Harmandaris, N. F. A. van der Vegt and K. Kremer, Phys. Chem. Chem. Phys., 2011, 13, 10412 DOI: 10.1039/C1CP20247B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements