Issue 11, 2011

Plasmon resonant enhancement of dye sensitized solar cells

Abstract

We report an improvement in the efficiency of dye sensitized solar cells (DSSCs) by exploiting the plasmonic resonance of Au nanoparticles. By comparing the performance of DSSCs with and without Au nanoparticles, we demonstrate a 2.4-fold enhancement in the photoconversion efficiency. Enhancement in the photocurrent extends over the wavelength range from 460 nm to 730 nm. The underlying mechanism of enhancement is investigated by comparing samples with different geometries, including nanoparticles deposited on top of and embedded in the TiO2 electrode, as well as samples with the light absorbing dye molecule deposited on top of and underneath the Au nanoparticles. The mechanism of enhancement is attributed to the local electromagnetic response of the plasmonic nanoparticles, which couples light very effectively from the far field to the near field at the absorbing dye molecule monolayer, thereby increasing the local electron–hole pair (or exciton) generation rate significantly. The UV-vis absorption spectra and photocurrent spectra provide further information regarding the energy transfer between the plasmonic nanoparticles and the light absorbing dye molecules. Based on scanning electron microscope images, we perform electromagnetic simulations of these different Au nanoparticle/dye/TiO2 configurations, which corroborate the enhancement observed experimentally.

Graphical abstract: Plasmon resonant enhancement of dye sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2011
Accepted
26 Aug 2011
First published
20 Sep 2011

Energy Environ. Sci., 2011,4, 4650-4655

Plasmon resonant enhancement of dye sensitized solar cells

W. Hou, P. Pavaskar, Z. Liu, J. Theiss, M. Aykol and S. B. Cronin, Energy Environ. Sci., 2011, 4, 4650 DOI: 10.1039/C1EE02120F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements