Issue 11, 2011

Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation

Abstract

This paper reports on efficient UV irradiation-induced reduction of exfoliated graphene oxide. Direct illumination of an aqueous solution of graphene oxide at λ = 312 nm for 6 h resulted in the formation of graphene nanosheets dispersible in water. X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, atomic force microscopy (AFM) and electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) suggest a restoration of the sp2carbon network. The results were compared with graphene nanosheets prepared by photochemical irradiation of a GO aqueous solution in the presence of hydrogenated silicon nanowire (SiNW) arrays or silicon nanowire arrays decorated with silver (SiNW/Ag NPs) or copper nanoparticles (SiNW/Cu NPs). Graphene nanosheets obtained by illumination of the GO aqueous solution at 312 nm for 6 h in the presence of SiNW/Cu NPs exhibited superior electrochemical charge transfer characteristics. This is mainly due to the higher amount of sp2-hybridized carbon in these graphene sheets found by XPS analysis. The high level of extended conjugated carbon network was also evident by the water insoluble nature of the resulting graphene nanosheets, which precipitated upon photochemical reduction.

Graphical abstract: Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation

Article information

Article type
Paper
Submitted
29 Jul 2011
Accepted
22 Aug 2011
First published
29 Sep 2011

Nanoscale, 2011,3, 4662-4669

Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation

O. Fellahi, M. R. Das, Y. Coffinier, S. Szunerits, T. Hadjersi, M. Maamache and R. Boukherroub, Nanoscale, 2011, 3, 4662 DOI: 10.1039/C1NR10970G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements