Issue 5, 2012

Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications

Abstract

Transition metal complexes of Ru(II), Pt(II) and Ir(III) with strong absorption of visible light and long-lived T1 excited states were summarized. A design rationale of these complexes, i.e. direct metalation of organic chromophore, was proposed. Alternatively an organic chromophore can be dangled on the peripheral moiety of the coordination center. In both cases the long-lived intraligand triplet excited state (3IL) can be accessed. However, the 3IL excited state is usually emissive for the former case and it is very often non-emissive for the latter case. Two methods used for study of the long-lived triplet excited state, i.e. the time-resolved transient difference absorption spectroscopy and the spin density analysis, are briefly introduced. Preliminary applications of the complexes in luminescent O2 sensing and triplet–triplet annihilation (TTA) upconversions were discussed.

Graphical abstract: Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications

Article information

Article type
Review Article
Submitted
02 Sep 2011
Accepted
10 Nov 2011
First published
23 Dec 2011

RSC Adv., 2012,2, 1712-1728

Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications

J. Zhao, S. Ji, W. Wu, W. Wu, H. Guo, J. Sun, H. Sun, Y. Liu, Q. Li and L. Huang, RSC Adv., 2012, 2, 1712 DOI: 10.1039/C1RA00665G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements