Issue 12, 2012

A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells

Abstract

Here we describe a combined microfluidic-micromagnetic cell separation device that has been developed to isolate, detect and culture circulating tumor cells (CTCs) from whole blood, and demonstrate its utility using blood from mammary cancer-bearing mice. The device was fabricated from polydimethylsiloxane and contains a microfluidic architecture with a main channel and redundant ‘double collection’ channel lined by two rows of dead-end side chambers for tumor cell collection. The microdevice design was optimized using computational simulation to determine dimensions, magnetic forces and flow rates for cell isolation using epithelial cell adhesion molecule (EpCAM) antibody-coated magnetic microbeads (2.8 μm diameter). Using this device, isolation efficiencies increased in a linear manner and reached efficiencies close to 90% when only 2 to 80 breast cancer cells were spiked into a small volume (1.0 mL) of blood taken from wild type mice. The high sensitivity visualization capabilities of the device also allowed detection of a single cell within one of its dead-end side chambers. When blood was removed from FVB C3(1)-SV40 T-antigen mammary tumor-bearing transgenic mice at different stages of tumor progression, cells isolated in the device using anti-EpCAM-beads and magnetically collected within the dead-end side chambers, also stained positive for pan-cytokeratin-FITC and DAPI, negative for CD45-PerCP, and expressed SV40 large T antigen, thus confirming their identity as CTCs. Using this isolation approach, we detected a time-dependent rise in the number of CTCs in blood of female transgenic mice, with a dramatic increase in the numbers of metastatic tumor cells appearing in the blood after 20 weeks when tumors transition to invasive carcinoma and exhibit increased growth of metastases in this model. Importantly, in contrast to previously described CTC isolation methods, breast tumor cells collected from a small volume of blood removed from a breast tumor-bearing animal remain viable and they can be easily removed from these devices and expanded in culture for additional analytical studies or potential drug sensitivity testing.

Graphical abstract: A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells

  • This article is part of the themed collection: Focus on USA

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2012
Accepted
05 Mar 2012
First published
08 Mar 2012

Lab Chip, 2012,12, 2175-2181

A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells

J. H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai and D. E. Ingber, Lab Chip, 2012, 12, 2175 DOI: 10.1039/C2LC40072C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements