Issue 24, 2013

Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals

Abstract

This paper describes an investigation into the general trend in electronic properties of anatase TiO2 photocatalysts co-doped with transition metals and nitrogen employing first-principles density functional theory. Fourteen different transition metals (M), including Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Cd, have been considered. The characteristic band structures of the co-doping systems involving the transition metal series are presented. Our results indicate that the absorption edges of TiO2 are shifted to the visible-light region upon introduction of dopants, due to the reduced conduction band minimum (CBM) and the formation of impurity energy levels (IELs) in the band gap. These IELs are primarily formed from (a) the anti-bonding orbitals of the M–O (M indicates the doped transition metal) bonds, (b) the unsaturated nonbonding d orbitals of the doped transition metal (mainly dxy, dyz, and dxz), and (c) the Ti–O bonding/Ti–N anti-bonding orbitals of the bond next to the doped transition metal. When the valence d electrons of the doped metal are between 3 and 7, all three types of IELs appear in the band gap of the (M, N) co-doped systems. For systems doped with a metal of more than 7 valence electrons, only types (a) and (c) of IELs as well as the unoccupied pz state of N are observed. Based on our analysis, we propose that the co-doping systems such as (V, N), (Cr, N), and (Mn, N), which have the IELs with a significant bandwidth, are of great potential as candidates for photovoltaic applications in the visible light range.

Graphical abstract: Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2013
Accepted
09 Apr 2013
First published
09 Apr 2013

Phys. Chem. Chem. Phys., 2013,15, 9549-9561

Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals

Q. Meng, T. Wang, E. Liu, X. Ma, Q. Ge and J. Gong, Phys. Chem. Chem. Phys., 2013, 15, 9549 DOI: 10.1039/C3CP51476E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements