Issue 7, 2014

A droplet-based screen for wavelength-dependent lipid production in algae

Abstract

We report a digital microfluidic system designed for droplet-based long-term culture and analysis of algae. The system includes unique innovations relative to standard devices including an active reservoir structure to maintain homogeneous cell density, a customized device layout capable of controlling a wide range of different droplet volumes, vertical interconnects to collect spent reagents, detection zones compatible with parallel-scale optical measurements using a standard multiwell plate reader, and optimized features for droplet dispensing in parallel. The method allows for automated, multiplexed analysis with significant reductions in human intervention, representing a decrease from 600 pipette steps (for a conventional screen in multiwell plates) to fewer than 20 (for the new microfluidic technique). The system was applied to screen conditions favourable for lipid generation in the widely used algal model for biofuel production, Cyclotella cryptica. A dependence on illumination wavelength was observed, with the best conditions (representing a four-fold increase relative to control) comprising an alternation between yellow (∼580 nm) and blue (∼450 nm) illumination wavelengths. These effects were observed for both micro- and macro-scale cultures, and are consistent with a putative mechanism involving photooxidative stress. We propose that the microfluidic system described here is an attractive new screening tool with potential advantages for applications in renewable energy, biotechnology, materials science, and beyond.

Graphical abstract: A droplet-based screen for wavelength-dependent lipid production in algae

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2014
Accepted
19 May 2014
First published
05 Jun 2014

Energy Environ. Sci., 2014,7, 2366-2375

A droplet-based screen for wavelength-dependent lipid production in algae

S. C. C. Shih, N. S. Mufti, M. D. Chamberlain, J. Kim and A. R. Wheeler, Energy Environ. Sci., 2014, 7, 2366 DOI: 10.1039/C4EE01123F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements