Issue 48, 2014

Improved digestibility of β-lactoglobulin by pulsed light processing: a dilatational and shear study

Abstract

Modifying the protein conformation appears to improve the digestibility of proteins in the battle against allergies. However, it is important not to lose the protein functionality in the process. Light pulse technology has been recently tested as an efficient non-thermal process which alters the conformation of proteins while improving their functionality as stabilizers. Also, in order to rationally design emulsion based food products with specific digestion profiles, we need to understand how interfacial composition influences the digestion of coated interfaces. This study has been designed to investigate the effects of pulsed light (PL) treatment on the gastrointestinal digestion of protein covered interfaces. We have used a combination of dilatational and shear rheology which highlights inter and intra-molecular interactions providing new molecular details on protein digestibility. The in vitro digestion model analyses sequentially pepsinolysis, trypsinolysis and lipolysis of β-lactoglobulin (BLG) and pulsed light treated β-lactoglobulin (PL-BLG). The results show that the PL-treatment seems to facilitate digestibility of the protein network, especially regarding trypsinolysis. Firstly, PL treatment just barely enhances the enzymatic degradation of BLG by pepsin, which dilutes and weakens the interfacial layer, due to increased hydrophobicity of the protein owing to PL-treatment. Secondly, PL treatment importantly modifies the susceptibility of BLG to trypsin hydrolysis. While it dilutes the interfacial layer in all cases, it strengthens the BLG and weakens the PL-BLG interfacial layer. Finally, this weakening appears to slightly facilitate lipolysis as evidenced by the results obtained upon addition of lipase and bile salts (BS). This research allows identification of the interfacial mechanisms affecting enzymatic hydrolysis of proteins and lipolysis, which demonstrates an improved digestibility of PL-BLG. The fact that PL treatment did not affect the functionality of the protein makes it a valuable alternative for tailoring novel food matrices with improved functional properties such as decreased digestibility, controlled energy intake and low allergenicity.

Graphical abstract: Improved digestibility of β-lactoglobulin by pulsed light processing: a dilatational and shear study

Article information

Article type
Paper
Submitted
28 Jul 2014
Accepted
08 Oct 2014
First published
08 Oct 2014

Soft Matter, 2014,10, 9702-9714

Author version available

Improved digestibility of β-lactoglobulin by pulsed light processing: a dilatational and shear study

T. del Castillo-Santaella, E. Sanmartín, M. A. Cabrerizo-Vílchez, J. C. Arboleya and J. Maldonado-Valderrama, Soft Matter, 2014, 10, 9702 DOI: 10.1039/C4SM01667J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements