Issue 33, 2018

Synthesis and structural characterization of inverse-coordination clusters from a two-electron superatomic copper nanocluster

Abstract

We have synthesized and structurally characterized a series of centred cuboctahedral copper clusters, namely [Cu13{S2CNR2}6{C[triple bond, length as m-dash]CR′}4](PF6), 1a–d (where a: R = nBu, R′ = CO2Me; b: R = nBu, R′ = CO2Et; c: R = iPr, R′ = CO2Et; d: R = nPr, R′ = 3,5-(CF3)2C6H3); [Cu1212-S){S2CNR2}6{C[triple bond, length as m-dash]CR′}4], 2a–c; [Cu1212-Cl){S2CNR2}6{C[triple bond, length as m-dash]CR′}4](PF6), 3a–e (where e: R = nBu, R′ = Ph); [Cu1212-Br){S2CNnBu2}6{C[triple bond, length as m-dash]CPh}4](PF6), 4e; and [Cu1212-Cl)(μ3-Cl){S2CNnBu2}6{C[triple bond, length as m-dash]CCO2Me}3]+5a. Cluster 1a is the first structurally characterized copper cluster having a Cu13 centered cuboctahedral arrangement, a miniature of the bulk copper fcc structure. Furthermore, the partial Cu(0) character in the 2-electron superatoms 1 was confirmed by XANES. Inverse coordination clusters 2–5 are the first examples of copper clusters containing main group elements (Cl, Br, S) with a hyper-coordination number, twelve. A combined theoretical and experimental study was performed, which shows that the central copper (formally Cu1−) in nanoclusters 1 can be replaced by chalcogen/halogen atoms, resulting in the formation of clusters 2–5 which show enhanced luminescence properties and increase in the ionic component of the host–guest interaction as Br ≈ Cl > S > Cu, which is consistent with the Cu–X Wiberg indices. The new compounds have been characterized by ESI-MS, 1H, 13C NMR, IR, UV-visible, emission spectroscopy, and the structures 2a–b, 3d–e, 4e and 5a were established by X-ray diffraction analysis.

Graphical abstract: Synthesis and structural characterization of inverse-coordination clusters from a two-electron superatomic copper nanocluster

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Apr 2018
Accepted
30 Jun 2018
First published
02 Jul 2018
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2018,9, 6785-6795

Synthesis and structural characterization of inverse-coordination clusters from a two-electron superatomic copper nanocluster

K. K. Chakrahari, R. P. B. Silalahi, J. Liao, S. Kahlal, Y. Liu, J. Lee, M. Chiang, J. Saillard and C. W. Liu, Chem. Sci., 2018, 9, 6785 DOI: 10.1039/C8SC01508B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements