Issue 45, 2020

Cell-free biology using remote-controlled digital microfluidics for individual droplet control

Abstract

Cell-free biology for diverse protein expression and biodetection in vitro has developed rapidly in recent years because of its more open and controllable reaction environment. However, complex liquid handling schemes are troublesome, especially when scaling up to perform multiple different reactions simultaneously. Digital microfluidic (DMF) technology can operate a single droplet by controlling its movement, mixing, separation, and some other actions, and is a suitable scaffold for cell-free reactions with higher efficiency. In this paper, a commercial DMF board, OpenDrop, was used, and DMF technology via remote real-time control inspired by the Internet of Things (IoT) was developed for detecting glucose enzyme catalytic cell-free reactions and verifying the feasibility of programmed cell-free protein expression. A cell-free biological reaction process which can be remote-controlled visually with excellent interactivity, controllability and flexibility was achieved. As proof-of-concept research, this work proposed a new control interface for single-drop cell-free biological reactions. It is much like the “droplet operation desktop” concept, used for remote-controllable operations and distributions of cell-free biology for efficient biological screening and protein synthesis in complex reaction networks, with expanded operability and less artificial interference.

Graphical abstract: Cell-free biology using remote-controlled digital microfluidics for individual droplet control

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2020
Accepted
02 Jul 2020
First published
20 Jul 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 26972-26981

Cell-free biology using remote-controlled digital microfluidics for individual droplet control

D. Liu, Z. Yang, L. Zhang, M. Wei and Y. Lu, RSC Adv., 2020, 10, 26972 DOI: 10.1039/D0RA04588H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements