Issue 12, 1997

Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells

Abstract

This work reports the synthesis and electrical characterisation over a range of oxygen partial pressures (10–20–1 atm) of the A-site deficient perovskites Sr1–3x/2LaxTiO3–δ, with a view to establishing their potential as anode materials for solid oxide fuel cells. Single phase samples were observed for synthesis in air for 0≤x≤0.6, and the materials remained phase pure for both high and low oxygen partial pressures at the measurement temperature of 930 °C. Good electrical conductivity, which increased with increasing La content, was observed on reduction in low oxygen partial pressures, with values as high as 7 S cm–1 [ P(O2)= 10–20 atm], similar to values observed for the related system, Sr1–x/2Ti1–xNbxO3–δ, examined previously. The conductivity of the fully reduced samples showed metallic character from 100 to 930 °C. As the oxygen partial pressure was raised, the conductivity dropped, showing an approximate [P(O2)]–1/6 dependence for porous samples. New samples, Sr1–y/2–3x/2LaxTi1–yNbyO3–δ, with both La and Nb substitutions, were also studied, and these phases showed similar electrical behaviour. Further results for the Sr1–x/2Ti1–xNbxO3–δsystem are presented and compared with the La doped systems.

Article information

Article type
Paper

J. Mater. Chem., 1997,7, 2495-2498

Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells

P. R. Slater, D. P. Fagg and J. T. S. Irvine, J. Mater. Chem., 1997, 7, 2495 DOI: 10.1039/A702865B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements