Issue 8, 1998

Structure and physical properties of a hydrogen-bonded self-assembled material composed of a carbamoylmethyl substituted TTF derivative

Abstract

Crystal structures of the carbamoylmethyl substituted TTF derivative AMET are characterized by polymeric hydrogen bonding between amide groups. As a result, the TTF moieties stack in parallel even in the neutral crystal. The nu;NH absorbtions of neutral AMET at 3426 and 3184cm1 show shifts to lower wavenumber, Delta;k, of 37 and 58cm1, respectively, at 4.1GPa. Therefore the shrinkage of the NH‥O distance is estimated to be ca. 0.04 at this pressure. The pressure dependence of the IR spectra of iodine-doped samples at doping ratios of less than 45 was exactly the same as that for a neutral sample, suggesting that the hydrogen bonding pattern is not affected significantly upon doping.Although crystalline AMET is an insulator in the neutral state (sigma;rt=ca. 108 Scm1), the conductivity is enhanced by a factor of 107 upon iodine doping of 45mol (sigma;rt=1.2101 Scm1). Furthermore, the conductivity increases as a function of the external pressure, and the sigma;rt of a 5 iodine-doped sample increased three-fold at 1.0GPa. The enhanced conductivity of iodine-doped samples may be ascribed to the increase in the overlap between the donor moieties based on the shrinkage of the hydrogen bond of the carbamoylmethyl group.

Article information

Article type
Paper

J. Mater. Chem., 1998,8, 1703-1709

Structure and physical properties of a hydrogen-bonded self-assembled material composed of a carbamoylmethyl substituted TTF derivative

G. Ono, A. Izuoka, T. Sugawara and Y. Sugawara, J. Mater. Chem., 1998, 8, 1703 DOI: 10.1039/A800509E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements