Issue 1, 1999

Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties

Abstract

The synthesis, structure and magnetic properties of a series of hybrid organic-inorganic copper(II) compounds are reported. Anion exchange reactions were used to prepare layered materials made of copper(II)-based inorganic layers separated by long chain anions (n-alkyl sulfates or n-alkyl carboxylates). Contrary to classical intercalated compounds, the exchanged anion is coordinated to the metal ion. Different packing modes of the n-alkyl chains (mono- or bi-layers) are evidenced, depending on the bridging functions. The magnetic properties have been related to the nature of the anionic spacer and the basal spacing. When ferromagnetic in-plane interactions dominate, 3D ferromagnetic ordering is usually observed for large spacing, due to a dipolar coupling effect. For unsaturated aliphatic chains, π electrons are shown to reinforce the interlayer exchange coupling, giving a ferromagnetic ground-state.

Article information

Article type
Paper

J. Mater. Chem., 1999,9, 169-174

Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties

V. Laget, C. Hornick, P. Rabu and M. Drillon, J. Mater. Chem., 1999, 9, 169 DOI: 10.1039/A805870I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements