Issue 9, 1999

Ladder-type materials

Abstract

Materials with a ribbon- or ladder-type framework possess a two-dimensional geometry and are thus intermediate between linear and three-dimensional systems. The limited conformational freedom of ladder polymers is particularly relevant in the case of conjugated ladder-type materials since the steric inhibition of electron delocalization is drastically reduced.

Up until today two general routes have been used to prepare ladder-type materials: (1) the polymerisation of multifunctional monomers, in which both strands of the ladder structure are generated in a single reaction; and (2) the cyclisation of suitably functionalized open-chain (single-stranded) precursor polymers in a polymer-analogous process. Both strategies pre-suppose certain essentials to arrive at structurally defined ladder polymers, especially the exclusion of side-reactions and an almost quantitative conversion of the starting materials.

The main attention of this article is focused on an active physical function of ladder-type materials. Among others, ladder-type poly( p-phenylene)s (LPPPs) represent an outstanding class of ladder-type materials. They are characterized by an extraordinarily low concentration of active traps (topological defects, impurities) and display a set of attractive electronic properties (very intensive photo- and electroluminescence, high charge carrier mobilities). This unique performance has established the solution processable LPPPs as standard materials for organic polymer based light emitting diodes (LEDs) and optically pumped solid state lasers.

Article information

Article type
Paper

J. Mater. Chem., 1999,9, 1853-1864

Ladder-type materials

U. Scherf, J. Mater. Chem., 1999, 9, 1853 DOI: 10.1039/A900447E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements