Issue 3, 1999

Green chemistry . The sonochemical approach

Abstract

Although the applications of ultrasound have long been known in both industry and academy, the “green” value of the non-hazardous acoustic radiation has been recognised by synthetic and environmental chemists only recently. The chemical and physical effects of ultrasound arise from the cavitational collapse which produce extreme conditions locally and thus induce the formation of chemical species not easily attained under conventional conditions, driving a particular radical reactivity. This rationale, accessible in a non-mathematical manner, anticipates the advantages of using this technology in a variety of processes that include milder reactions with improved yields and selectivities, easy generation of reactive species and catalysts or replacement of hazardous reagents. Sonication enables the rapid dispersion of solids, decomposition of organics including biological components, as well as the formation of porous materials and nanostructures. This review summarises how ultrasound can be harnessed to develop an alternative and mild chemistry, which parallels the ability of acoustic waves to induce homolytic bond cleavage.

Article information

Article type
Paper

Green Chem., 1999,1, 115-125

Green chemistry . The sonochemical approach

P. Cintas and J. Luche, Green Chem., 1999, 1, 115 DOI: 10.1039/A900593E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements