Issue 5, 2001

High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density

Abstract

Development of several new computational approaches within the framework of multi-reference ab initio molecular electronic structure methodology and their implementation in the COLUMBUS program system are reported. These new features are: calculation of the analytical MR-CI gradient for excited states based on state-averaged MCSCF orbitals, the extension of the MR-ACPF/AQCC methods to excited states in the framework of linear-response theory, spin–orbit CI for molecules containing heavy atoms and the development of a massively-parallel code for the computation of the one- and two-particle density matrix elements. Illustrative examples are given for each of these cases.

Article information

Article type
Paper
Submitted
05 Oct 2000
Accepted
31 Oct 2000
First published
18 Dec 2000

Phys. Chem. Chem. Phys., 2001,3, 664-673

High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density

H. Lischka, R. Shepard, R. M. Pitzer, I. Shavitt, M. Dallos, T. Müller, P. G. Szalay, M. Seth, G. S. Kedziora, S. Yabushita and Z. Zhang, Phys. Chem. Chem. Phys., 2001, 3, 664 DOI: 10.1039/B008063M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements