Issue 12, 2001

Abstract

The compound NiCo2O4, with spinel-related structure, has been prepared by thermal decomposition of metal nitrates and its bulk structural properties examined by means of magnetic measurements, neutron diffraction, X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The results suggest a delocalised electron distribution on the octahedral sites with average oxidation states of +3.5 and +2.5 for nickel and cobalt, respectively, and lead to a cation distribution for NiCo2O4 of {Ni3+0.1Co2+0.9}tet[Ni3.5+0.9Co2.5+1.1]octO4. This electronic configuration is consistent with magnetisation measurements if applied magnetic fields cause a charge redistribution on the octahedral sites to favour Co3+ and Ni3+. The surface of NiCo2O4 was examined by X-ray photoelectron spectroscopy (XPS) and found to have a different composition containing Co2+, Co3+, Ni2+, Ni3+ and, probably, Ni4+.

Graphical abstract: Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4

Article information

Article type
Paper
Submitted
06 Apr 2001
Accepted
17 Aug 2001
First published
09 Oct 2001

J. Mater. Chem., 2001,11, 3087-3093

Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4

J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier, E. I. Ríos, H. M. Palmer, C. Greaves and F. J. Berry, J. Mater. Chem., 2001, 11, 3087 DOI: 10.1039/B103135J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements