Issue 11, 2001

Arene-perfluoroarene interactions in crystal engineering. Part 3. Single-crystal structures of 1 : 1 complexes of octafluoronaphthalene with fused-ring polyaromatic hydrocarbons

Abstract

Molecular complexes of 1 : 1 stoichiometry of octafluoronaphthalene (OFN) with the polyaromatic hydrocarbons anthracene, phenanthrene, pyrene and triphenylene have been prepared, and their single-crystal X-ray structures determined at 120 K. All of the structures are composed of infinite stacks of alternating, almost parallel molecules of OFN and the hydrocarbons, in contrast to the herringbone or γ-type (flattened herringbone) packing of the pure components. It is clearly shown that the stacking motif does not require a close correlation between the molecular geometry of the arene and perfluoroarene species, but is stable over a wide range of differing sizes and shapes. Thus, the arene–perfluoroarene interaction is of general importance as a supramolecular synthon. The molecular geometries of the components are not affected by complexation, indicating the absence of charge transfer in the complexes. The role of close C–H···F–C and C–F···F–C intermolecular contacts between stacks is discussed. A re-determination of the single-crystal structure of triphenylene at 150 K is also reported, providing a more accurate comparison with that of the 1 : 1 OFN·triphenylene complex.

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2001
Accepted
14 Sep 2001
First published
19 Oct 2001

New J. Chem., 2001,25, 1410-1417

Arene-perfluoroarene interactions in crystal engineering. Part 3. Single-crystal structures of 1 : 1 complexes of octafluoronaphthalene with fused-ring polyaromatic hydrocarbons

J. C. Collings, K. P. Roscoe, R. Ll. Thomas, A. S. Batsanov, L. M. Stimson, J. A. K. Howard and T. B. Marder, New J. Chem., 2001, 25, 1410 DOI: 10.1039/B105502J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements