Issue 10, 2002

Viscoelasticity in the diffuse electric double layer

Abstract

The electroacoustical impedance of the quartz crystal microbalance (QCM) in contact with aqueous electrolyte solutions was measured using the transfer function method in a flow injection system . Measurements of both components of the impedance of the QCM, the resistance R and the inductive reactance XL, have been performed for modified and bare gold and silver surfaces and for different concentrations of several aqueous electrolyte solutions. For the experimental concentration range of 0–50 mM, unexpectedly the QCM impedance does not follow the Kanazawa equation, as is usual for bulk newtonian liquids. This behavior indicates the presence of a nanometric sized viscoelastic layer between the piezoelectric crystal and the bulk electrolyte solution. This layer can only be identified as the Gouy–Chapman diffuse double layer (DDL). Its elasticity and viscosity have been estimated by the measurement of R and XL. The viscoelasticity of the DDL appears to be independent of the chemical nature of the surface and of the solution viscosity but strongly dependent on the surface charge, the bulk electrolyte concentration and the dielectric constant of the solvent.

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2002
Accepted
19 Aug 2002
First published
09 Sep 2002

Analyst, 2002,127, 1347-1352

Viscoelasticity in the diffuse electric double layer

R. Etchenique and T. Buhse, Analyst, 2002, 127, 1347 DOI: 10.1039/B206305K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements