Issue 1, 2003

Separation of Fe from whole blood matrix for precise isotopic ratio measurements by MC-ICP-MS: a comparison of different approaches

Abstract

Anion-exchange and precipitation procedures for Fe separation from unspiked human whole blood after microwave digestion and ashing decomposition techniques were thoroughly evaluated in terms of Fe recoveries, decreases in matrix element concentrations and elimination of interfering species for subsequent Fe isotope ratio measurements by multi-collector ICP-MS. During isotope ratio measurements involving 54Fe, 56Fe and 57Fe, on-line mass discrimination correction using Ni isotopes was applied, significantly reducing uncertainties both within and between Fe sample runs. Despite Fe recoveries below 100% for all separation procedures studied, no artificial isotope fractionation was detected. The degree of Fe fractionation in a commercially available, whole blood sample (Trace Elements in Whole Blood, Level 1, Sero AS), expressed as 56δ (−2.83 ± 0.06‰) and 57δ (−4.23 ± 0.08‰) values relative to IRMM-014 Fe isotopic reference material, agrees well with previously published data. Of the tested separation procedures, precipitation using NH3 was found to be the most rapid and cost-effective method, yielding high Fe recovery and low levels of concomitant elements.

Article information

Article type
Paper
Submitted
24 Oct 2002
Accepted
26 Nov 2002
First published
10 Dec 2002

J. Anal. At. Spectrom., 2003,18, 23-28

Separation of Fe from whole blood matrix for precise isotopic ratio measurements by MC-ICP-MS: a comparison of different approaches

A. Stenberg, D. Malinovsky, I. Rodushkin, H. Andrén, C. Pontér, B. Öhlander and D. C. Baxter, J. Anal. At. Spectrom., 2003, 18, 23 DOI: 10.1039/B210482B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements