Issue 12, 2003

Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity

Abstract

The voltammetric responses of carbon-fiber microelectrodes with a 1.0 V and a 1.4 V anodic limit were compared in this study. Fast-scan cyclic voltammetry was used to characterize the response to dopamine and several other neurochemicals. An increase in the adsorption properties of the carbon fiber leads to an increase in sensitivity of 9 fold in vivo. However the temporal response of the sensor is slower with the more positive anodic limit. Increased electron transfer kinetics also causes a decrease in the relative sensitivity for dopamine vs. other neurochemicals, and a change in their cyclic voltammograms. Stimulated release in the caudate-putamen was pharmacologically characterized in vivo using Ro-04-1284 and pargyline, and was consistent with that expected for dopamine.

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2003
Accepted
20 Oct 2003
First published
11 Nov 2003

Analyst, 2003,128, 1413-1419

Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity

M. L. A. V. Heien, P. E. M. Phillips, G. D. Stuber, A. T. Seipel and R. M. Wightman, Analyst, 2003, 128, 1413 DOI: 10.1039/B307024G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements