Issue 11, 2003

Ion selectivity obtained under voltammetric conditions when a TCNQ chemically modified electrode is presented with aqueous solutions containing tetraalkylammonium cations

Abstract

The voltammetry of 7,7,8,8-tetracyanoquinodimethane (TCNQ) at an electrode-microparticle-aqueous (electrolye) interface has been proposed as a cation sensor on the basis that changes in electrolyte cation (analyte) concentrations result in reproducible shifts in the TCNQ0/− reversible potential. In order to probe the ion selective nature of the TCNQ sensor, the voltammetric response towards a series of tetraalkylammonium cations of variable size and hydrophobicity were studied. Both the thermodynamics (reversible potential) and kinetics (voltammetric peak separation) of the TCNQ0/− system were strongly dependant on the identity of the R4N+ cation. The reversible potential responded in a Nernstian manner to changes in cation concentration. When presented with mixed-analyte solutions, the TCNQ system exhibited Nicolsky type (or competitive) form of selectivity. However, the selectivity coefficients found in the present study were far greater than previously reported with group I cations. The order obtained for the tetraalkylammonium series indicates that ion selectivity is predominantly based on analyte solvation thermodyanics rather than a specific ionophore mechanism.

Article information

Article type
Paper
Submitted
31 Jul 2003
Accepted
14 Oct 2003
First published
27 Oct 2003

Analyst, 2003,128, 1386-1390

Ion selectivity obtained under voltammetric conditions when a TCNQ chemically modified electrode is presented with aqueous solutions containing tetraalkylammonium cations

T. J. Wooster and A. M. Bond, Analyst, 2003, 128, 1386 DOI: 10.1039/B309078G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements