Issue 13, 2004

Governing the oxidative addition of iodine to gold(i) complexes by ligand tuning

Abstract

While several gold(I) complexes of the type (L)AuX (X = Cl, Br) are known to undergo oxidative addition of elemental chlorine and bromine (X2), respectively, to give the corresponding gold(III) complexes (L)AuX3, the addition of iodine to (iodo)gold(I) compounds is strongly ligand-dependent, suggesting a crucial threshold in the oxidation potentials. A systematic investigation of this particular oxidative addition of iodine using a large series of tertiary phosphines as ligands L has shown that both electronic and steric effects influence the course of the reaction. The reactions were followed by 31P NMR spectroscopy and the products crystallized from dichloromethane–pentane solutions. Complexes with small triakylphosphines (PMe3, PEt3) are readily oxidized, while those with more bulky ligands (PiPr3, PtBu3) are not. With L taken from the triarylphosphine series [PPh3, P(2-Tol)3, P(3-Tol3), P(4-Tol)3] no oxidation takes place at all, but mixed alkyl/aryl-phosphines [PMenPh3−n] induce oxidation for n = 3 and 2, but not for n = 1 and 0. However, in cases where no oxidation of the gold atoms is observed, the synthons may crystallize as adducts with molecular iodine of the polyiodide type instead, which have an iodine rich stoichiometry. This fact explains inconsistent reports in the literature. The metal atoms in (L)AuI coordination compounds with L representing a tri(heteroaryl)phosphine [P(2-C4H3E)3, E = O, S], a phosphite [P(OR)3] or a trialkenylphosphine [PVi3] are all not subject to oxidative addition of iodine. The dinuclear complex of the ditertiary phosphine Ph2PCH2PPh2, (dppm)(AuI)2, gives an iodine adduct (without oxidation of the metal atoms), but with 1,2-Ph2P(C6H4)PPh2 (dppbe) an ionic complex [(dppbe)AuI2]+I3 with a chelated gold(III) centre is obtained. The gold(I) bromide complexes with tertiary phosphines are readily oxidized by bromine to give the corresponding gold(III) tribromide complexes, as demonstrated for (BzMePhP)AuBr and (Ph3P)AuBr. With (dppm)(AuBr)2 the primary product with mixed oxidation states was also isolated: (dppm)AuBr(AuBr3). The crystal structures of the following representative examples and reference compounds have been determined: (Me3P)AuI3, (Me2PhP)AuI3, (iPr3P)AuI·1.5I2, (Ph3P)AuI·I2, {[(2-Tol)3P]AuI}2·I2, [(2-Tol)3P]AuI, (dppm)(AuX)2 (with X = Br, I), (dppm)AuBr(AuBr3) and [(dppbe)AuI2]+I3. The structures are discussed focusing on the steric effects. It appears that e.g. the reluctance of (Ph3P)AuI to add I2 is an electronic effect, while that of (iPr3P)AuI has its origin in the steric influence of the ligand.

Graphical abstract: Governing the oxidative addition of iodine to gold(i) complexes by ligand tuning

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2004
Accepted
15 Apr 2004
First published
26 Apr 2004

Dalton Trans., 2004, 1995-2005

Governing the oxidative addition of iodine to gold(I) complexes by ligand tuning

D. Schneider, A. Schier and H. Schmidbaur, Dalton Trans., 2004, 1995 DOI: 10.1039/B403005B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements