Issue 21, 2004

Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling

Abstract

Chemistry in aqueous solution is an easy and versatile method to form nanosized metal oxide particles. Considering our previous results on magnetite Fe3O4, anatase TiO2, brucite Mg(OH)2, and boehmite γ-AlOOH, we show that the strict control of the physicochemical conditions of the precipitation, essentially the acidity and ionic strength in the absence of complexing species, enables the tailoring of the particle size in the range 2–15 nm and, in some cases, of their morphology. We show that the variations in size and/or shape are tightly related to the variation of the electrostatic surface charge density of the particles, which induces a variation of the oxide-solution interfacial tension, and, consequently, a decrease of the surface energy. Such an effect enables the control of the surface area of the system. A semi-quantitative model is presented, which accounts for the effects observed for particles isotropic or anisotropic in shape.

Graphical abstract: Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling

Article information

Article type
Paper
Submitted
11 May 2004
Accepted
12 Aug 2004
First published
30 Sep 2004

J. Mater. Chem., 2004,14, 3281-3288

Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling

J. Jolivet, C. Froidefond, A. Pottier, C. Chanéac, S. Cassaignon, E. Tronc and P. Euzen, J. Mater. Chem., 2004, 14, 3281 DOI: 10.1039/B407086K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements