Issue 20, 2004

Structure and phase transition of Sn-substituted Zr(1−x)SnxW2O8

Abstract

A conventional solid state reaction between ZrO2, SnO2 and WO3 was used to prepare the negative thermal expansion material Zr(1−x)SnxW2O8. The strong negative thermal expansion over a broad temperature range, which is well known for the pure zirconium tungstate compound, is also demonstrated in this substituted material. However, the order–disorder phase transition of the cubic materials was shown to shift towards lower temperatures, dependent on the degree of Sn4+-substitution, by dilatometry and temperature variable X-ray diffraction. This is attributed to the lower bond strength of the Sn–O bond in comparison to the Zr–O bond. The unit cell parameters of the material are significantly smaller due to the insertion of smaller Sn4+-cations on the Zr4+-position in the structure. For one composition (x = 0.3), the structure of Zr(1−x)SnxW2O8 was studied by neutron diffraction at two temperatures, 293 K and 473 K, corresponding to respectively the low temperature α-, and high temperature β-polymorph of Zr(1−x)SnxW2O8. The refined structures were found to be similar to that of ZrW2O8 at the same temperatures. Variable temperature X-ray diffraction of the same sample was used to establish the phase transition temperature, by refining the fractional occupancy of the possible tungstate orientations with temperature.

Graphical abstract: Structure and phase transition of Sn-substituted Zr(1−x)SnxW2O8

Article information

Article type
Paper
Submitted
24 May 2004
Accepted
15 Jul 2004
First published
18 Aug 2004

J. Mater. Chem., 2004,14, 2988-2994

Structure and phase transition of Sn-substituted Zr(1−x)SnxW2O8

C. De Meyer, F. Bouree, J. S. O. Evans, K. De Buysser, E. Bruneel, I. Van Driessche and S. Hoste, J. Mater. Chem., 2004, 14, 2988 DOI: 10.1039/B407851A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements