Issue 2, 2005

Octanol–water partition coefficients of imidazolium-based ionic liquids

Abstract

Ionic liquids (ILs) are low melting organic salts that are being vigorously investigated as possible replacements for volatile organic solvents. While they cannot contribute to air pollution due to their negligible vapor pressure, they do have significant solubility in water. As a result, this is the most likely medium through which ILs will enter the environment. Therefore, it is important to understand how ILs will influence aquatic ecosystems. A simple thermodynamic measurement that has been extremely useful in estimating effects of chemical pollutants on aquatic environments is the octanol–water partition coefficient (KOW). It is an extremely important quantity because it describes the hydrophobicity or hydrophilicity of a compound and has been correlated with bioaccumulation and toxicity in fish, as well as sorption to soils and sediments. Here we present measurements of the KOW of twelve imidazolium-based ILs at room temperature, using the slow-stirring method. For the butylmethylimidazolium cation, KOW values range from 0.003 to 11.1, depending on the choice of anion. In addition, we find that the KOW values increase with increasing alkyl chain length on the cation and that replacing the acidic hydrogen on the carbon between the two nitrogens in the imidazolium ring with a methyl group has negligible effect on the KOW. However, all of the KOW values measured, even for the most “hydrophobic” imidazolium-based ILs, are less than 15 so these ILs will not accumulate or concentrate in the environment.

Graphical abstract: Octanol–water partition coefficients of imidazolium-based ionic liquids

Article information

Article type
Paper
Submitted
16 Jul 2004
Accepted
17 Nov 2004
First published
22 Dec 2004

Green Chem., 2005,7, 83-90

Octanol–water partition coefficients of imidazolium-based ionic liquids

L. Ropel, L. S. Belvèze, S. N. V. K. Aki, M. A. Stadtherr and J. F. Brennecke, Green Chem., 2005, 7, 83 DOI: 10.1039/B410891D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements