Issue 5, 2005

Reactions of nitric oxide on Rh6+ clusters: abundant chemistry and evidence of structural isomers

Abstract

We report the first results of a new instrument for the study of the reactions of naked metal cluster ions using techniques developed by Professor Bondybey to whom this issue is dedicated. Rh6+ ions have been produced using a laser vaporization source and injected into a 3 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer where they are exposed to a low pressure (<10−8 mbar) of nitric oxide, NO. This system exhibits abundant chemistry, the first stages of which we interpret as involving the dissociative chemisorption of multiple NO molecules, followed by the liberation of molecular nitrogen. This yields key intermediates such as [Rh6O2]+ and [Rh6O4]+. The formation of the latter, after adsorption of four NO molecules, marks a change in the chemistry observed with further NO molecules adsorbed (presumably molecularly) without further N2 evolution until saturation is apparently reached with the [Rh6O4(NO)7]+ species. We analyse the data in terms of a simple 12-stage reaction mechanism, and we report the relative rate constants for each step. The trends in reactivity are assessed in terms of conceivable structures and the results are discussed where appropriate by comparison with extended surface studies of the same system. Particular attention is paid to the first step in the reaction (Rh6+ + NO → [Rh6NO]+) which exhibits distinctly bi-exponential kinetics, an observation we interpret as evidence for two different structural isomers of the Rh6+ cluster with one reacting more than an order of magnitude faster than the other.

Graphical abstract: Reactions of nitric oxide on Rh6+ clusters: abundant chemistry and evidence of structural isomers

Article information

Article type
Paper
Submitted
05 Oct 2004
Accepted
19 Nov 2004
First published
14 Dec 2004

Phys. Chem. Chem. Phys., 2005,7, 975-980

Reactions of nitric oxide on Rh6+ clusters: abundant chemistry and evidence of structural isomers

M. S. Ford, M. L. Anderson, M. P. Barrow, D. P. Woodruff, T. Drewello, P. J. Derrick and S. R. Mackenzie, Phys. Chem. Chem. Phys., 2005, 7, 975 DOI: 10.1039/B415414B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements