Issue 6, 2005

Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting

Abstract

Phthalocyanines (Pcs) offer a high architectural flexibility in structure, which facilitates the tailoring of their physical, optoelectronic and chemical parameters over a very broad range. This tutorial review describes the recent advances in the synthesis of soluble axially substituted or bridged gallium phthalo- and naphthalocyanine compounds, and their photophysical and nonlinear optical properties. The exploitation of the chemical reactivity of the Ga–Cl bond can allow the preparation of a series of highly soluble axially substituted and bridged Pc complexes. Axial substituents in Pcs influence favourably nonlinear optical absorption for the presence of a dipole moment perpendicular to the macrocycle in the axially substituted phthalocyanines. All Z-scans performed exhibit a decrease of transmittance about the focus typical of an induced positive nonlinear absorption of incident light. Substitution and dimerization of the phthalocyanine monomer resulted in significant reductions in the saturation energy density of the material displaying clear evidence of the usefulness of structurally modifying the gallium phthalocyanine unit. Similar to indium phthalocyanines, gallium phthalocyanines are also among the most promising materials that have been investigated as limiters of intense light and the current series presents a selection of structural modifications useful for varying their nonlinear optical properties.

Graphical abstract: Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting

Article information

Article type
Tutorial Review
Submitted
28 Dec 2004
First published
02 Mar 2005

Chem. Soc. Rev., 2005,34, 517-529

Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting

Y. Chen, M. Hanack, Y. Araki and O. Ito, Chem. Soc. Rev., 2005, 34, 517 DOI: 10.1039/B416368K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements