Issue 13, 2005

Bubble guidance of tubular growth in reaction–precipitation systems

Abstract

Numerous types of reaction–precipitation systems involve the growth of tubular structures similar to those formed in “silica gardens”. As a model case for this phenomenon, we investigate the rapid growth of hollow tubes in the reaction between sodium silicate and cupric sulfate. The latter solution is injected hydrodynamically at constant flow rates of 1–20 mL h−1 into a large reservoir of waterglass. In this study, the growth is templated and guided by single, buoyant gas bubbles. The resulting tubes can be several decimetres long and have constant radii in the range of 100–600 μm. Systematic measurements show that bubble size governs the tube radius. According to this radius, the system selects its growth velocity following volume conservation of the injected solution. Moreover, scanning electron microscopy reveals intricate ring patterns on the tube walls. We also show evidence for the existence of a minimal and a maximal tube radius. Finally, we report an intriguing collapse of tubes created at high silicate concentrations, which yields twisted ribbon-like structures. Critical radii and tube collapse are discussed in terms of simple competing forces.

Graphical abstract: Bubble guidance of tubular growth in reaction–precipitation systems

Article information

Article type
Paper
Submitted
30 Mar 2005
Accepted
06 May 2005
First published
01 Jun 2005

Phys. Chem. Chem. Phys., 2005,7, 2610-2615

Bubble guidance of tubular growth in reaction–precipitation systems

S. Thouvenel-Romans, J. J. Pagano and O. Steinbock, Phys. Chem. Chem. Phys., 2005, 7, 2610 DOI: 10.1039/B504407C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements