Volume 132, 2006

Surface-enhanced Raman scattering for the rapid discrimination of bacteria

Abstract

Raman spectroscopy is attracting interest for the rapid identification of bacteria and fungi and is now becoming accepted as a potentially powerful whole-organism fingerprinting technique. However, the Raman effect is so weak that collection times are lengthy, and this insensitivity means that bacteria must be cultured to gain enough biomass, which therefore limits its usefulness in clinical laboratories where high-throughput analyses are needed. The Raman effect can fortunately be greatly enhanced (by some 103–106-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface; a technique known as surface-enhanced Raman scattering (SERS). In this study we investigated SERS, employing an aggregated silver colloid substrate, for the analysis of a closely related group of bacteria belonging to the genus Bacillus. Each spectrum took only 20 s to collect and highly reproducible data were generated. The multivariate statistical technique of principal components-discriminant function analysis (PC-DFA) was used to group these bacteria based on their SERS fingerprints. The resultant ordination plots showed that the SERS spectra were highly discriminatory and gave accurate identification at the strain level. In addition, Bacillus species also undergo sporulation, and we demonstrate that SERS peaks that could be attributed to the dipicolinic acid biomarker, could be readily generated from Bacillus spores.

Article information

Article type
Paper
Submitted
09 May 2005
Accepted
13 May 2005
First published
29 Sep 2005

Faraday Discuss., 2006,132, 281-292

Surface-enhanced Raman scattering for the rapid discrimination of bacteria

R. M. Jarvis, A. Brooker and R. Goodacre, Faraday Discuss., 2006, 132, 281 DOI: 10.1039/B506413A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements