Issue 11, 2005

Highly stable CuO incorporated TiO2catalyst for photocatalytic hydrogen production from H2O

Abstract

A CuO incorporated TiO2 catalyst was found to be an active photocatalyst for the reduction of H2O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO2 and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient interparticle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO2/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO2/CuO gains the required overvoltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. ∼5–10% (w/w).

Graphical abstract: Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O

Article information

Article type
Paper
Submitted
03 Jun 2005
Accepted
16 Aug 2005
First published
08 Sep 2005

Photochem. Photobiol. Sci., 2005,4, 857-861

Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O

J. Bandara, C. P. K. Udawatta and C. S. K. Rajapakse, Photochem. Photobiol. Sci., 2005, 4, 857 DOI: 10.1039/B507816D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements