Issue 43, 2005

Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts

Abstract

The direct synthesis of hydrogen peroxide from H2 and O2 using a range of Au, Pd and Au–Pd metal nanoparticles supported on iron oxide is described and discussed, and in particular the microstructure of the catalysts are investigated using a detailed electron microscopy study. Iron oxide was selected as a support because Au/Fe2O3 catalysts are known to be very active for low temperature CO oxidation. Hydrogen peroxide synthesis was investigated at low temperatures (2 °C) and short reaction (residence) time, and the addition of Pd to the Au catalyst was found to increase the rate of hydrogen peroxide synthesis as well as the concentration of hydrogen peroxide formed. Indeed the rates of hydrogen peroxide synthesis are higher for the Au–Pd alloy catalysts as compared to the Au or Pd only catalysts. These catalyst materials were also investigated for CO oxidation at 25 °C and all were found to be almost inactive. In contrast, Au-based catalysts that are very effective for low temperature CO oxidation were found to be totally inactive for H2 oxidation to H2O2. This suggests an inverse correlation between catalysts that are active for either CO or H2 activation. The microstructure of the Au–Pd/Fe2O3 catalysts was studied using scanning transmission electron microscopy and the metal alloy nanoparticles were found to have a core–shell morphology with Pd concentrated on the catalyst surface.

Graphical abstract: Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts

Article information

Article type
Paper
Submitted
05 Jul 2005
Accepted
05 Sep 2005
First published
23 Sep 2005

J. Mater. Chem., 2005,15, 4595-4600

Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts

J. K. Edwards, B. Solsona, P. Landon, A. F. Carley, A. Herzing, M. Watanabe, C. J. Kiely and G. J. Hutchings, J. Mater. Chem., 2005, 15, 4595 DOI: 10.1039/B509542E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements