Issue 10, 2006

Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks

Abstract

This Dalton Perspective deals with solvent-free reactions taking place within solids or between solids or involving a solid and a vapour. The focus is on reactions involving organometallic and coordination compounds and occurring via reassembling of non-covalent bonding, e.g. hydrogen bonds, and/or formation of ligand–metal coordination bonds. It is argued that reactions activated by mechanical mixing of solid reactants as well as those obtained by exposing a crystalline solid to a vapour can be exploited to “make crystals”, which is the quintessence of crystal engineering. It is demonstrated through a number of examples that solvent-free methods, such as co-grinding, kneading, milling of molecular solids, or reactions of solid with vapours represent viable alternative, when not unique, routes for the preparation of novel molecular and supramolecular solids as well as for the preparation of polymorphic or solvate modifications of a same species. The structural characterization of the products requires the preparation of single crystals suitable for X-ray diffraction, a goal often achieved by seeding.

Graphical abstract: Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks

Article information

Article type
Perspective
Submitted
16 Nov 2005
Accepted
25 Jan 2006
First published
10 Feb 2006

Dalton Trans., 2006, 1249-1263

Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks

D. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi and M. Polito, Dalton Trans., 2006, 1249 DOI: 10.1039/B516165G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements