Issue 12, 2006

Amino-functionalized mesoporous silica synthesized by an anionic surfactant templating route

Abstract

A “SN+∼I pathway” (S: anionic surfactant, N+: cationic amino group and I: inorganic species) for the synthesis of mesoporous silica has been developed by using 3-aminopropyltriethoxysilane (APS) as a co-structure directing agent (CSDA), which can interact with the anionic head group in the surfactant (SDA). Thus synthesized mesoporous silica has been designated as AMS (Anionic-surfactant-templated Mesoporous Silica). Removal of the anionic surfactant by extraction led to the functionalized AMS containing amino groups on the silica surface. Amino-functionalized AMS using 3-aminopropyltriethoxysilane (APS) and lauric acid sodium salt (LAS) as CSDA and SDA, respectively, was synthesized with varying proportions of APS in the silica sources (x-APS-AMS, where x is the proportion of APS in the silica sources, x = 0.1–0.6). In 0.4-APS-AMS, the content of amino groups derived from APS estimated by CHN elemental analysis and the argentometric titration was 2.36 and 2.24 mmol g−1, respectively, suggesting that almost all the aminopropyl moieties were on the surfaces in contrast to the MCM-41 type materials synthesized with a cationic surfactant. Thus obtained amino-functionalized AMS via the anionic surfactant templating route shows a higher adsorption capacity for Co2+ cations than amino-functionalized MCM-41 prepared by the direct co-condensation method via a conventional cationic templating route. There was also a marked difference in the activity for the Knoevenagel reaction between amino-functionalized AMS and MCM-41, indicating a significant difference in the state of aminopropyl moieties exposed to the surfaces.

Graphical abstract: Amino-functionalized mesoporous silica synthesized by an anionic surfactant templating route

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2005
Accepted
16 Jan 2006
First published
30 Jan 2006

J. Mater. Chem., 2006,16, 1125-1135

Amino-functionalized mesoporous silica synthesized by an anionic surfactant templating route

T. Yokoi, H. Yoshitake, T. Yamada, Y. Kubota and T. Tatsumi, J. Mater. Chem., 2006, 16, 1125 DOI: 10.1039/B516863E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements