Issue 29, 2006

Synthetic and structural studies on C-ethynyl- and C-bromo-carboranes

Abstract

A high-yield preparation of the C-monoethynyl para-carborane, 1-Me3SiC[triple bond, length as m-dash]C-1,12-C2B10H11, from C-monocopper para-carborane and 1-bromo-2-(trimethylsilyl)ethyne, BrC[triple bond, length as m-dash]CSiMe3 is reported. The low-yield preparation of 1,12-(Me3SiC[triple bond, length as m-dash]C)2-1,12-C2B10H10 from the C,C′-dicopper para-carborane derivative with 1-bromo-2-(trimethylsilyl)ethyne, BrC[triple bond, length as m-dash]CSiMe3, has been re-investigated and other products were identified including the C-monoethynyl-carborane 1-Me3SiC[triple bond, length as m-dash]C-1,12-C2B10H11 and two-cage assemblies generated from cage–cage couplings. The contrast in the yields of the monoethynyl and diethynyl products is due to the highly unfavourable coupling process between 1-RC[triple bond, length as m-dash]C-12-Cu-1,12-C2B10H10 and the bromoalkyne. The ethynyl group at the cage carbon C(1) strongly influences the chemical reactivity of the cage carbon at C(12)—the first example of the ‘antipodal effect’ affecting the syntheses of para-carborane derivatives. New two-step preparations of 1-ethynyl- and 1,12-bis(ethynyl)-para-carboranes have been developed using a more readily prepared bromoethyne, 1-bromo-3-methyl-1-butyn-3-ol, BrC[triple bond, length as m-dash]CCMe2OH. The molecular structures of the two C-monoethynyl-carboranes, 1-RC[triple bond, length as m-dash]C-1,12-C2B10H11 (R = H and Me3Si), were experimentally determined using gas-phase electron diffraction (GED). For R = H (RG = 0.053) a model with C5v symmetry refined to give a C[triple bond, length as m-dash]C bond distance of 1.233(5) Å. For R = Me3Si (RG = 0.048) a model with Cs symmetry refined to give a C[triple bond, length as m-dash]C bond distance of 1.227(5) Å. Molecular structures of 1,12-Br2-1,12-C2B10H10, 1-HC[triple bond, length as m-dash]C-12-Br-1,12-C2B10H10 and 1,12-(Me3SiC[triple bond, length as m-dash]C)2-1,12-C2B10H10 were determined by X-ray crystallography. Substituents at the cage carbon atoms on the C2B10 cage skeleton in 1-X-12-Y-1,12-C2B10H10 derivatives invariably lengthen the cage C–B bonds. However, the subtle substituent effects on the tropical B–B bond lengths in these compounds are more complex. The molecular structures of the ethynyl-ortho-carborane, 1-HC[triple bond, length as m-dash]C-1,2-C2B10H11 and the ethene, trans-Me3SiBrC[double bond, length as m-dash]CSiMe3Br are also reported.

Graphical abstract: Synthetic and structural studies on C-ethynyl- and C-bromo-carboranes

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2005
Accepted
03 Apr 2006
First published
27 Apr 2006

Dalton Trans., 2006, 3544-3560

Synthetic and structural studies on C-ethynyl- and C-bromo-carboranes

M. A. Fox, A. M. Cameron, P. J. Low, M. A. J. Paterson, A. S. Batsanov, A. E. Goeta, D. W. H. Rankin, H. E. Robertson and J. T. Schirlin, Dalton Trans., 2006, 3544 DOI: 10.1039/B517538K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements