Issue 16, 2006

Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films

Abstract

The preparation and characterization of a self-assembled material showing a high nonlinear response and good photostability to ultrashort laser pulses is presented. The material is built by alternate deposition of tetrakis(4-sulfonatophenyl)porphyrin diacid (H4TPPS2−) and poly(diallyldimethylammonium chloride) (PDDA) forming electrostatically self-assembled multilayers (ESAMs). UV-visible absorption and emission experiments show that in this matrix H4TPPS2− is present mainly in its J-aggregated form. Furthermore, linear dichroism experiments on a 3 bilayer film show a preferential alignment of the porphyrin aggregate with the J-band transition dipole moment parallel to the film surface. The two photon absorption (TPA) properties of these films are investigated with the Z-scan technique at 806 nm, employing 130 fs pulses. The samples exhibit strong nonlinearities with a very large two-photon absorption coefficient βTPA of 50 cm GW−1. The origin of this large response is investigated. It has been already demonstrated that aggregation enhances the molecular TPA cross section of H4TPPS2− from 30 to 1000 GM in water solution thanks to cooperative effects. In a 20 bilayer film a further increase by a factor of 1.7 is observed and explained in terms of preferential alignment of J-aggregates in the multilayers.

Graphical abstract: Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2005
Accepted
07 Feb 2006
First published
13 Feb 2006

J. Mater. Chem., 2006,16, 1573-1578

Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films

E. Collini, C. Ferrante, R. Bozio, A. Lodi and G. Ponterini, J. Mater. Chem., 2006, 16, 1573 DOI: 10.1039/B517591G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements