Volume 134, 2007

Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductors

Abstract

In this paper, detailed studies of the effect of Mg doping in the apatite-type oxide ion conductor La9.33Si6O26 are reported. Mg is confirmed as an ambi-site dopant, capable of substituting for both La and Si, depending on the starting composition. A large enhancement in the conductivity is observed for Si site substitution, with a reduction for substitution on the La site. Neutron powder diffraction studies show that in agreement with cation size expectations, an enlargement of the unit cell is observed on Mg substitution for Si, with a corresponding increase in the size of the tetrahedral sites. For Mg substitution on the La site, a contraction of the unit cell is observed, and the neutron diffraction results indicate that there is preferential occupancy of Mg on the La2 (1/3, 2/3, ≈0.5) site. Atomistic simulation studies show significant local structural changes affecting the oxide ion channels in both cases. Mg doping on the Si site leads to a local expansion of the channels, while doping on the La site results in a large displacement of the silicate O4 site, such that it encroaches the oxide ion channels. The observed differences in conductivities are discussed with respect to these observations.

Article information

Article type
Paper
Submitted
15 Feb 2006
Accepted
30 Mar 2006
First published
19 Jul 2006

Faraday Discuss., 2007,134, 181-194

Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductors

E. Kendrick, J. E. H. Sansom, J. R. Tolchard, M. S. Islam and P. R. Slater, Faraday Discuss., 2007, 134, 181 DOI: 10.1039/B602258H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements