Issue 40, 2006

Silver(i) complexation of linked 2,2′-dipyridylamine derivatives. Synthetic, solvent extraction, membrane transport and X-ray structural studies

Abstract

Synthesis of the 2,2′-dipyridylamine derivatives di-2-pyridylaminomethylbenzene 1, 1,2-bis(di-2-pyridylaminomethyl)benzene 2, 1,3-bis(di-2-pyridylaminomethyl)benzene 3, 2,6-bis(di-2-pyridylaminomethyl)pyridine 4, 1,4-bis(di-2-pyridylaminomethyl)benzene 5, and 1,3,5-tris(di-2-pyridylaminomethyl)benzene 6 are reported together with the single-crystal X-ray structures of 2, 3, and 5. Reaction of individual salts of the type AgX (where X = NO3, PF6, ClO4, or BF4) with the above ligands has led to the isolation of thirteen Ag(I) complexes, nine of which have also been characterised by X-ray diffraction. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a range of coordination arrangements. A series of liquid–liquid (H2O/CHCl3) extraction experiments of Ag(I) with varying concentrations of 1–6 in the organic phase have been undertaken, with the counter ion in the aqueous phase being respectively picrate, perchlorate and nitrate. In general, extraction efficiencies for a given ionophore followed the Hofmeister order of picrate > perchlorate > nitrate; in each case the tris-dpa derivative 6 acting as the most efficient extractant of the six systems investigated. Competitive seven-metal bulk membrane transport experiments (H2O/CHCl3/H2O) employing the above ligands as the ionophore in the organic phase and equimolar concentrations of Co(II), Ni(II), Zn(II), Cu(II), Cd(II), Pb(II) and Ag(I) in the aqueous source phase were also undertaken, with transport occurring against a pH gradient. Under the conditions employed 1 and 5 yielded negligible transport of any of the metals present in the source phase while sole transport selectivity for Ag(I) was observed for 2–4 and 6.

Graphical abstract: Silver(i) complexation of linked 2,2′-dipyridylamine derivatives. Synthetic, solvent extraction, membrane transport and X-ray structural studies

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2006
Accepted
31 Aug 2006
First published
12 Sep 2006

Dalton Trans., 2006, 4783-4794

Silver(I) complexation of linked 2,2′-dipyridylamine derivatives. Synthetic, solvent extraction, membrane transport and X-ray structural studies

B. Antonioli, D. J. Bray, J. K. Clegg, K. Gloe, K. Gloe, O. Kataeva, L. F. Lindoy, J. C. McMurtrie, P. J. Steel, C. J. Sumby and M. Wenzel, Dalton Trans., 2006, 4783 DOI: 10.1039/B609738C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements