Issue 2, 2007

Bi-functionalization of a patterned Prussian blue array for amperometric measurement of glucose via two integrated detection schemes

Abstract

A novel amperometric sensor that integrates two independent measurement schemes into a single chip for detection of glucose is fabricated. The sensor uses micro-patterned Prussian blue (PB) and ferrocene modified glucose oxidase covered by a thin Nafion membrane. We have developed an amperometric sensor for the detection of glucose that integrates two measurement schemes into a single chip. For fabrication of the sensing interface, micro-contact printing was used to transfer a self-assembled monolayer template onto a gold substrate, allowing selective electrochemical deposition of a PB array. The protective layer of the PB array was subsequently removed and replaced with a layer of redox-functionalized glucose oxidase (GOx), while the entire surface was finally covered with a perm-selective GOx–Nafion membrane. A variety of surface analytical techniques, including atomic force microscopy, surface plasmon resonance imaging and spectroscopic ellipsometry were employed to characterize the composite PB array electrode. The hybrid sensing interface allowed amperometric measurements of glucose to be carried out with two independent schemes at different potentials. The cathodic current was obtained with the PB array functioning as the electrocatalyst, while the anodic current was measured at a higher potential via a mediation mechanism using the ferrocene-modified GOx. For the quantitative detection of glucose, flow-injection analysis was used, and both the operating conditions and the design parameters were optimized. Linear responses were obtained for both anodic and cathodic signals over a concentration range from 0.1 to 50 mM, with a detection limit of 75 µM. The specificity of the sensor was demonstrated with respect to ascorbic and lactic acid. The implementation of integrated detection mechanisms allows the independent measurement of amperometric signals at two separate potentials. This improves the information gathering and opens up new avenues for developing novel methods that potentially eliminate false signal readings.

Graphical abstract: Bi-functionalization of a patterned Prussian blue array for amperometric measurement of glucose via two integrated detection schemes

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2006
Accepted
06 Nov 2006
First published
21 Nov 2006

Analyst, 2007,132, 164-172

Bi-functionalization of a patterned Prussian blue array for amperometric measurement of glucose via two integrated detection schemes

N. Zhang, T. Wilkop, S. Lee and Q. Cheng, Analyst, 2007, 132, 164 DOI: 10.1039/B611357E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements