Issue 15, 2007

Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core–shell superstructures with skeletal properties of pure compounds

Abstract

Rare earth (RE) aerogels combine the typical high porosity of aerogels with useful electrical, magnetic, optical and catalytic properties of the skeletal framework. RE aerogels were prepared by supercritical fluid CO2 drying of wet gels, which in turn were obtained via a modification of literature procedures involving epichlorohydrine-induced gelation of ethanolic solutions of the hydrated chlorides. But even more so than their silica counterparts, RE aerogels are fragile materials. This problem is addressed by using the innate hydroxyl functionality of the mesoporous surfaces as the focal point for casting a conformal polyurethane/polyurea layer over their entire inorganic framework, thus preserving most of the mesoporosity of the native network (70% v/v after vs. 94% v/v before applying the polymer layer) and a significant portion of the mesoporous surface area (156 ± 19 m2 g−1 after vs. 368 ± 14 m2 g−1 before casting the polymer). Detailed chemical analysis shows that RE aerogels are far from pure oxides. For example, the RE metal content (Pr to Lu) is in the range of 58.0 ± 2.3% w/w, vs. 85.4–87.9% in the pure oxides. RE aerogels contain also carbonate, chloride and organic products from the gelation process. Despite their chemical complexity, however, both native and polymer encapsulated RE sol–gel materials are stoichiometrically similar, and by using the magnetic susceptibility as a probe, it is found that physical properties depending on the atomic number (AN) of the RE core element vary linearly with those of pure RE compounds. Therefore, from an applications design perspective RE sol–gel materials themselves can be treated as pure compounds. By analogy, similar types of core–shell structures and the associated benefits should be possible for all sol–gel materials.

Graphical abstract: Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core–shell superstructures with skeletal properties of pure compounds

Supplementary files

Article information

Article type
Paper
Submitted
01 Sep 2006
Accepted
01 Dec 2006
First published
15 Jan 2007

J. Mater. Chem., 2007,17, 1502-1508

Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core–shell superstructures with skeletal properties of pure compounds

N. Leventis, P. Vassilaras, E. F. Fabrizio and A. Dass, J. Mater. Chem., 2007, 17, 1502 DOI: 10.1039/B612625A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements