Issue 13, 2007

Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries

Abstract

Nano-sized crystalline silicon particles, prepared by a laser-induced vapour deposition method, were coated onto the surface of particles of a modified natural graphite (SSG) by sonicated dispersion and a subsequent heat-treatment process. The microstructure of the Si-coated SSG was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the nanometer-scale Si particles were uniformly and completely coated on the surface of SSG particles, and both the Si and SSG particles existed in the crystalline state. The Si-coated SSG exhibits a much higher reversible capacity than pristine SSG, while keeping the good cycling performance of SSG material. The higher capacity can be ascribed to the alloying of Si with lithium. Because of the heat-treatment at 600 °C, used to achieve a good combination of Si with the SSG base, the cycling of the composites is very satisfactory. As a result, Si-coated SSG is a promising anode material for lithium ion batteries.

Graphical abstract: Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries

Article information

Article type
Paper
Submitted
07 Sep 2006
Accepted
06 Dec 2006
First published
09 Jan 2007

J. Mater. Chem., 2007,17, 1321-1325

Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries

T. Zhang, J. Gao, L. J. Fu, L. C. Yang, Y. P. Wu and H. Q. Wu, J. Mater. Chem., 2007, 17, 1321 DOI: 10.1039/B612967F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements