Issue 14, 2007

Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors

Abstract

New prototype semiconductor materials based on dibenzothiophene (DBT) derivatives were successfully synthesized by a convergent approach using palladium catalyzed Stille coupling reactions. Thermogravimetric analysis, UV-vis spectra and electrochemistry results indicated these materials had good thermal and photooxidation stability. X-Ray diffraction measurements of the vacuum-evaporated films showed enhanced crystalline order with increasing substrate deposition temperature. The ordered vacuum-evaporated films with charge carrier mobility as high as 7.7 × 10−2 cm2 V−1 s−1 and an on/off ratio of nearly 1 × 107 had been achieved with 3,7-bis(5′-hexyl-thiophen-2′-yl)-dibenzothiophene (3,7-DHTDBTT). These results suggest that the 3,7-substituted DBT system is a good prototype for new type organic semiconductors and will play a more important role in organic semiconductors.

Graphical abstract: Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors

Article information

Article type
Paper
Submitted
09 Nov 2006
Accepted
04 Jan 2007
First published
26 Jan 2007

J. Mater. Chem., 2007,17, 1421-1426

Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors

J. Gao, L. Li, Q. Meng, R. Li, H. Jiang, H. Li and W. Hu, J. Mater. Chem., 2007, 17, 1421 DOI: 10.1039/B616381E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements