Issue 17, 2007

Structure and stability of the (001) α-quartz surface

Abstract

The structure and surface energies of the cleaved, reconstructed, and fully hydroxylated (001) α-quartz surface of various thicknesses are investigated with periodic density functional theory (DFT). The properties of the cleaved and hydroxylated surface are reproduced with a slab thickness of 18 atomic layers, while a thicker 27-layer slab is necessary for the reconstructed surface. The performance of the hybrid DFT functional B3LYP, using an atomic basis set, is compared with the generalised gradient approximation, PBE, employing plane waves. Both methodologies give similar structures and surface energies for the cleaved and reconstructed surfaces, which validates studying these surfaces with hybrid DFT. However, there is a slight difference between the PBE and B3LYP approach for the geometry of the hydrogen bonded network on the hydroxylated surface. The PBE adsorption energy of CO on a surface silanol site is in good agreement with experimental values, suggesting that this method is more accurate for hydrogen bonded structures than B3LYP. New hybrid functionals, however, yield improved weak interactions. Since these functionals also give superior activation energies, we recommend applying the new functionals to contemporary issues involving the silica surface and adsorbates on this surface.

Graphical abstract: Structure and stability of the (001) α-quartz surface

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2007
Accepted
07 Feb 2007
First published
23 Feb 2007

Phys. Chem. Chem. Phys., 2007,9, 2146-2152

Structure and stability of the (001) α-quartz surface

T. P. M. Goumans, A. Wander, W. A. Brown and C. R. A. Catlow, Phys. Chem. Chem. Phys., 2007, 9, 2146 DOI: 10.1039/B701176H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements