Issue 6, 2007

Drop coating deposition Raman spectroscopy of protein mixtures

Abstract

The technique of drop coating deposition Raman (DCDR) spectroscopy has been shown to be a highly reproducible and sensitive method of obtaining Raman spectra from low concentration protein solutions. This study assesses the ability of DCDR to analyse changes in the relative protein concentrations of aqueous tertiary protein mixtures, with protein levels similar to that found in human tear fluid. The three proteins used to make the mixtures were lysozyme, lactoferrin and albumin. The combination of DCDR spectroscopy and principal components analysis is found to be sensitive enough to detect small changes in the relative protein concentrations, from very small sample volumes (1.5 µl). With certain mixtures it was found that the deposition of proteins was not homogeneous across the width of the ring, but averaging spectra taken at different positions could compensate for this. Principal components regression was able to predict the protein concentrations of test solutions with a good degree of accuracy (root-mean-square errors of prediction of 0.083, 0.112, and 0.082 mg ml−1 or 8.3, 11.2 and 8.2% of the mean concentration value, for lysozyme, lactoferrin and albumin concentrations respectively). The results of this study suggest that DCDR spectroscopy could be a simple, fast, near-patient technique capable of assisting the diagnosis of ocular infection.

Graphical abstract: Drop coating deposition Raman spectroscopy of protein mixtures

Article information

Article type
Paper
Submitted
31 Jan 2007
Accepted
10 Apr 2007
First published
23 Apr 2007

Analyst, 2007,132, 544-550

Drop coating deposition Raman spectroscopy of protein mixtures

J. Filik and N. Stone, Analyst, 2007, 132, 544 DOI: 10.1039/B701541K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements